当前位置:首页 > 试题 > 数学试题

《稍复杂的分数应用题》教学设计

时间:2024-08-13 10:16:14
《稍复杂的分数应用题》教学设计(通用9篇)

《稍复杂的分数应用题》教学设计(通用9篇)

作为一名为他人授业解惑的教育工作者,时常需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那要怎么写好教学设计呢?下面是小编整理的《稍复杂的分数应用题》教学设计,欢迎阅读与收藏。

《稍复杂的分数应用题》教学设计1

教学内容:教材第145页期末复习第13—16题。

教学要求:

使学生进一步认识本册教材里学过的应用题及其结构,加深理解对这些应用题数量关系的理解,认识一些应用题之间的联系和区别,能比较熟练地分析推理并正确地解答应用题,提高解答应用题的能力。

教学过程:

一、揭示课题

本学期我们学习了三步计算的应用题。这节课,我们复习本学期学过的应用题。(板书课题)通过复习,要进一步认识本册教材里的应用题的特点,更加熟练地分析应用题的数量关系,正确地确定要先算的中间问题,进一步认识一些应用题之间的联系和区别,能正确地解答本学期学过的应用题。

二、复习三步计算应用题

1.整理思路。

这学期我们学习了许多三步计算应用题。请同学们想一想,我们学过的三步计算应用题,解答时可按怎样的方法来想要先求出的中间问题?还可以按照怎样的方法来想要先求出的中间问题

2.做期末复习第13题。让学生读题理解题意。

提问:这两题有什么相同和不同的地方?两道题的数量关系是怎样的

指名两人板演,其余学生做在练习本上。集体订正。

提问:第(2)题还可以怎样解答

学生口答,老师板书。

小结:这两题都是求两商之差的三步计算应用题,而第(2)题有一重复条件,所以也可以两步计算列式解答。

3.做期末复习第14题。学生读题,比较:两道题有什么联系和区别

第(1)题根据问题可以怎样想?根据条件又可以怎样想

第(2)题可以怎样想呢

指名学生说一说这两题的解题思路。指名两人板演,其余学生做在练习本上。集体订正。

小结:这两题都可以从条件想起,或者从问题想起。但第(1)题的已知条件、所求问题和第(2)题的互换,所以解题思路有所不同,但都有一个共同的中间问题:即6天装配电脑的台数要先求出来。

请同学们看下面一道题。

山边林场栽槐树和杉树各12行,槐树每行24棵,杉树每行30棵。栽的槐树和杉树一共多少棵

提问:这道题可以用几种方法解答

第一种方法怎样解答?(板书综合算式)这样做是怎样想的

第二种方法可以先求什么,再求什么?怎样列算式?(板书综合算式

谁来说一说,这道题为什么可以用两种方法做

四、课堂小结

这节课我们复习了什么内容?解答应用题可以用哪两种方法来分析

指出:解答应用题,可以根据条件来想能求什么问题,也可以根据问题来想需要什么条件,确定每一步算什么。在列式时,要根据条件和条件、条件和问题的联系,尽考每一步用什么方法算。在本学期学的三步计算应用题里,如果有一个条件是两个数量共同的条件,也可以用两种方法来解答。

五、课堂作业

1.期末复习第15题。要求先说一说解题思路,再列式解答。

2.期末复习第16题。要求能用几种方法就用几种方法解答。

《稍复杂的分数应用题》教学设计2

教学内容:教材第58页例4和“练一练”,练习十二第5—7题。

教学要求:

使学生初步学会列含有未知数z的等式解答相差关系中逆叙的一步计算应用题的方法,进一步掌握列含有未知数芦的等式解答应用题的步骤和思路,能正确列出含有未知数j的等式解答相差关系的逆叙应用题;进一步培养学生的分析、推理和解题能

教学过程:

一、复习铺垫

1.列含有未知数i的等式解答应用题。

(1)养鸡场养鸡500只,卖出一些后还剩300只,卖出了多少

(2)张师傅和李师傅一共加工零件135个。其中李师傅加工了75个,张师傅加工了多少个?

指名两人板演,其余学生分两组,每组完成一道,各人做在练习本上。

集体订正。

提问:列含有未知数工的等式解应用题时,要几步?第(1)题列含有未知数j的等式是怎样想的?第(2)题呢?

指出列含有未知数x的等式解答应用题时,要根据题意找出数量关系式,对照着数量关系式来列出等式。

2.应用题。

粮站运来面粉96袋,运来的大米比面粉多24袋,运来大米多少袋?

读题后让学生想一想,这样的题用什么方法解答。学生口答算式和得数,老师板书。

提问:这道题为什么用加法算?题里的数量关系式是怎样的?

(板书:面粉的袋数+24=大米的袋数)

二、教学新课

1.出示例4,读题。

提问:例4与上面一道题有什么相同和不同的地方?

这两道题虽然有不同的地方,但相同的都是大米比面粉多24袋。想一想,例4的数量关系与上一题一样吗?

2.谁再来说一说,例4的数量关系是怎样的?为什么?

(评析:通过重复提问,可以突出例4的数量关系,便于学生列出含有未知数j的等式。提问“为什么”,有利于学生认识根据题里怎样的条件找相差关系逆叙应用题的数量关系式。)

根据这个数量关系式,你能列出含有未知数j的等式解答例4吗?

第一步先做什么?(板书设未知数x,并说明注意写“解”字。)

第二步要做什么?列出怎样的等式?(板书:x+24=120)

第三步求未知数x的值要怎样算?(学生口答,老师板书,说明求出x的值不带单位名称)你是怎样想的?

写出答句。

3.你能根据题意,检验这样解答是否正确吗?谁来告诉大家,的面粉有24袋。120一x=24)

追问:为什么可以列这样的等式?

怎样求未知数工?(学生口答,老师板书,并写出答句)

5.提问:今天学习的也是用什么方法来解答应用题?(板书课题)例4可以列几种等式来解答?这两个等式都是根据什么列出来的?

指出:列含有未知数j的等式解答应用题的关键,是根据题意想数量关系式。这样才能对照数量关系式列出含有未知数x的等式。

想一想,例4是根据题里什么条件来想数量关系式,列含有未知数x的等式的?

三、巩固练习

1、根据下面的条件说一说数量关系式。

(1)鸡比鸭多30只。

(2)杨树比柳树少15棵。

(3)美术班比舞蹈班少 ……此处隐藏12111个字……,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。

1÷(1/8+1/10)×3/4

=1÷9/40×3/4=10/3(天)

②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。

3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)

评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。两种思路简捷、清晰,都是很好的解法。

练习:一项工程,单独完成,甲队需8天,乙队需12天。两队合干了一段时间后,还剩这项工程的1/6没完成。问甲、乙两队合干了几天?

例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。两人同时出发,相向而行,几小时才能相遇?

[思路说明]①由甲2小时行全程的1/3。可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。

综合算式:

1÷(1/(2÷1/3)+1/(2÷1/2))

=1÷(1/6+1/4)=1÷5/12=12/5(小时)

②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。

综合算式:

1÷(1/3÷2+1/2÷2)

=1÷(1/6+1/4)=1÷5/12=12/5(小时)

评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。

练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?

例4一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?

[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。

1÷(1/6-1/18)=1÷1/9=9(天)

评点这是一道较复杂的工程问题,是工程问题的主要题型之一。主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?

例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?

[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

综合算式:

[1-(1/10+1/15)×5]÷1/12

=[1-1/6×5]÷1/12

=1/6÷1/12=2(天)

评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.

练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?

例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?

[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

综合算式:

1÷[1/6-(1-1/6×2)÷8]

=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]

=1÷[1/6-1/12]=1÷1/12=12(天)

评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?

《《稍复杂的分数应用题》教学设计(通用9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式